

Continuous monitoring of the structural condition of the tower and supporting structure of floating and static offshore wind turbines

The TowerPower project has been kicked-off

On the 5th and 6th of May, the 11 partners of the collaborative European project TowerPower met in Aix-en-Provence (France) to kick it off. The project aims to develop a remote real time monitoring system for the ageing diagnosis of offshore wind turbine structures.

This development meets a real demand from the offshore wind park operators looking for maintenance cost reductions by increasing time between onsite inspections. The project will last 3 years within a budget close to 2 M€.

Coordinated by the cluster Capenergies (FR), the TowerPower project will involve:

- Associations having activities in the wind energy sector, who will carry out the dissemination and exploitation scheme of the innovation: Capenergies (FR), Cylsolar (ES) et Associazione Italiana Prouver non Distruttive – AIPnD (IT),
- Pilot SMEs interested by the technology, who will contribute to orientate the research work: Kingston Computer Consulting - KCC (UK), Moniteye (UK), Teknisk Data AS (NO), WLB (CY) et TecopySA (ES),
- Research centres in charge of the system design, development and validation: CETIM (FR), Innora (GR) et TWI (UK)

A typical substructure for an offshore wind turbine generator consists of a foundation structure (piles/buckets), a Monopile/Jacket, a Transition Piece and a Tower. The main ageing phenomena observed are:

- Instances of fatigue cracking in the support towers;
- Flange bolts at the ends of the tower sections becoming loose;
- Higher than expected levels of vibration, which could cause either of the above mechanisms:
- Degradation of the grouted joint between the pile and transition piece in offshore installations.

Relying on a network of sensors of various natures, on amplifying electronics and on advanced signal processing algorithms, the TowerPower solution will enable self-learning of the normal behavior "signature" of the structure and to detect any deviation from the initial record. Meanwhile, the system will contribute to a better understanding of physic-chemical phenomena leading to flaws triggering.

The intellectual property generated through the project, including eventual patent applications, will be jointly owned by the participating associations, which may conclude licenses agreements with the participating SMEs, their member companies and even other companies in the world according to the business opportunities. TWI as a research and technological development organisation, will benefit from an Increase in the knowledge and expertise in the field of offshore wind energy, allowing the finding of new supply chain opportunities and strengthening TWI's capabilities and research reputation".

by

Commission,

the

Continuous monitoring of the structural condition of the tower and supporting structure of floating and static offshore wind turbines

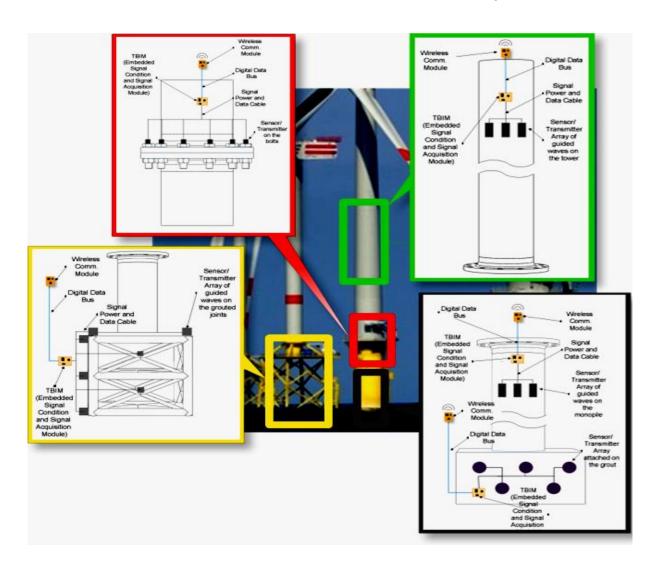
The TowerPower project is co-financed by the European Commission within the 7th Framework Programme for Research and Development. The content of this publication reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein.

Partners' Logos

tda

Pictures:

Offshore wind park


Continuous monitoring of the structural condition of the tower and supporting structure of floating and static offshore wind turbines

Crack in the weld of the tower

Crack in the weld of the flange to the tower

